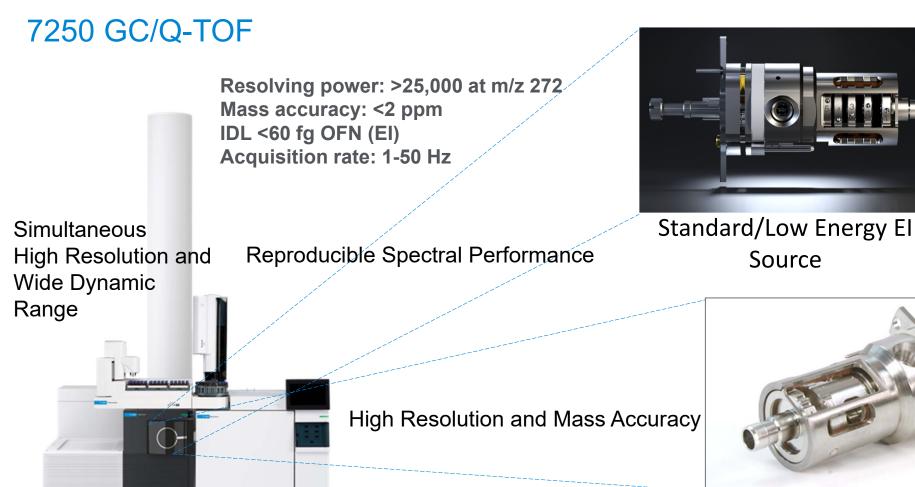


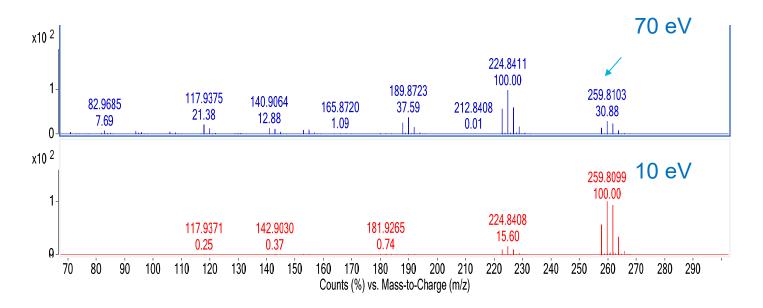
Analysis of Persistent Organic Pollutants (POPs) by high-resolution GC/MS


Tarun Anumol, Matthew Curtis, Paul Contreras and Sofia Nieto Agilent Technologies Inc.

Agilent Public NEMC 2020 For Research Use Only. Not for use in diagnostic procedures.

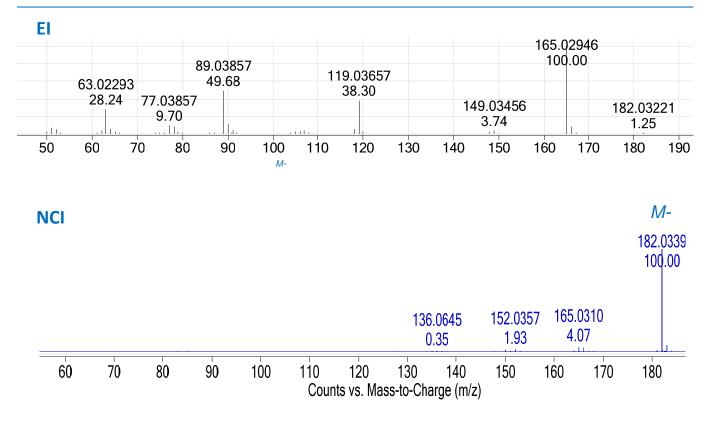
Why do you need a GC/Q-TOF? Water Treatment plant samples in NY

Agilent

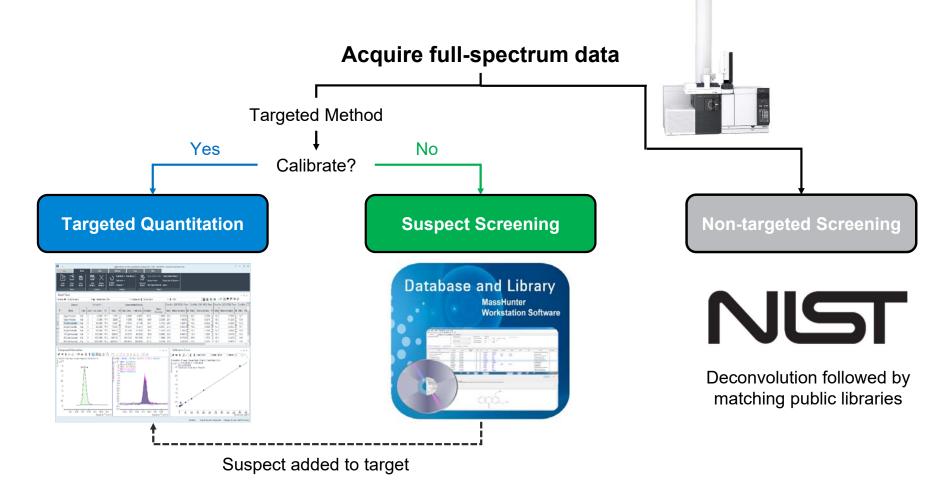

Agilent

CI Source

Agilent Public NEMC 2020 For Research Use Only. Not for use in diagnostic procedures.


Traditional El vs Low Energy El

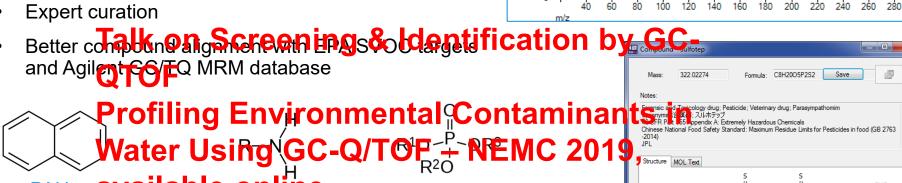
hexachlorobutadiene


Chemical Ionization vs Low Energy El

2,4-Dinitrotoluene

Agilent Public NEMC 2020 For Research Use Only. Not for use in diagnostic procedures.

Workflow Strategy


GC/Q-TOF Accurate Mass Library

GC/Q-TOF Pesticides & Environmental Pollutants PCDL – now with **1000+ compounds**:

High Resolution Spectra

Phthalates

Expert curation

+EI MS1 QTOF

100-

80

60-

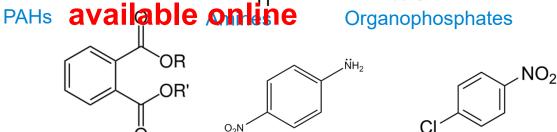
40-

20

Abundance

64,97869 96,95076

87.66


46.96813

8.87

100.00

145,92557

51.30

Nitroanilines Chloronitrobenzenes

🔆 Agilent

322.02219

92,52

300 320 340

201.98817 237.92828

65.99

66.67

СНЗ

снз

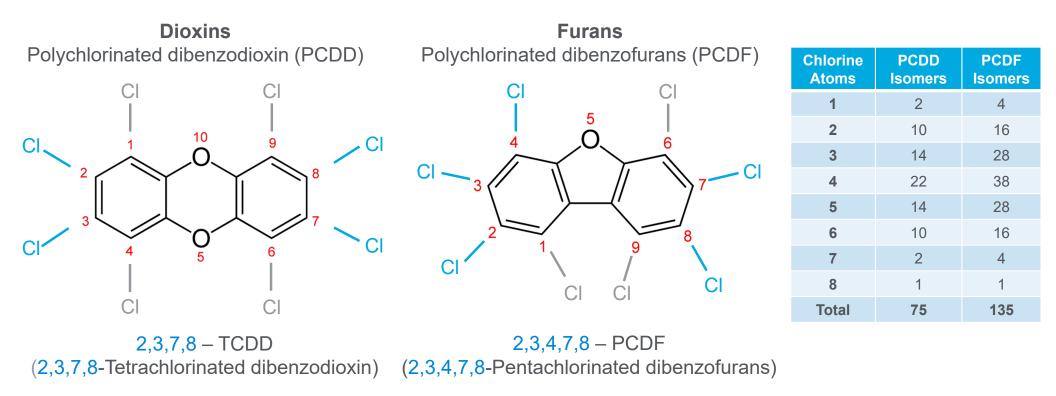
Persistent Organic Pollutants (POPs) in Stockholm Convention

- The Stockholm Convention on POPs (2001) is a global treaty to protect **human health** from chemicals that remain in the environment and are **persistent**, **bioaccumulative** and transportable across the globe.
- Include:
 - Industrial chemicals ex. PCBs, hexachlorobenzene
 - Pesticides ex. Aldrin, DDT, endrin, toxaphene etc.
 - Pharmaceuticals
 - Solvents
 - By-products ex. Dioxins & Furans

- Initially 'dirty dozen' but new POPs include Perfluoro alkyl substances (PFAS), short chain chlorinated parafins (SCCPs), pesticides, Deca-BDE etc.
- Typically hydrophobic, therefore GC/MS analysis is a superior choice

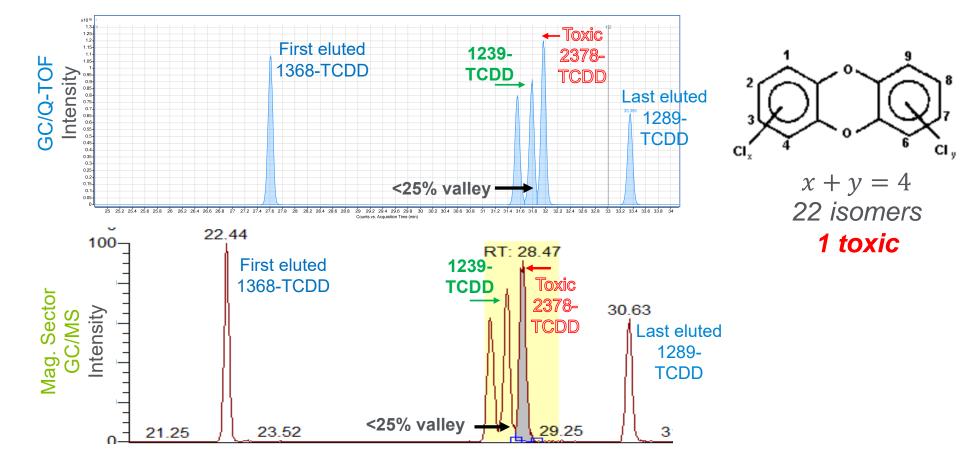
Analysis of Dioxins by GC/Q-TOF

Agilent Public NEMC 2020 For Research Use Only. Not for use in diagnostic procedures.



Analysis of Dioxins in US done mainly by EPA 1613B Tetra- through Octo-Chlorinated Dioxins & Furans by HRGC/HRMS

Agilent Public NEMC 2020 For Research Use Only. Not for use in diagnostic procedures.

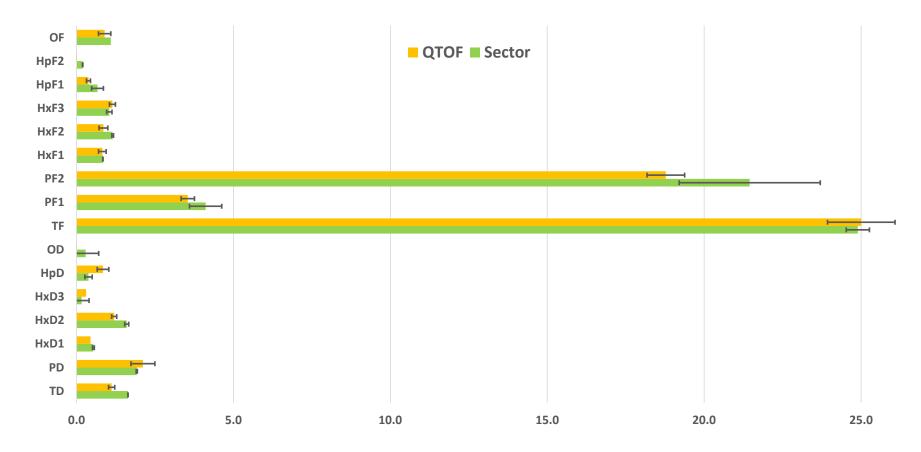

PCDD and PCDF Nomenclature and Isomers

	75 total PCDD isomers	135 total PCDF isomers	17 toxic isomer
11	Agilent Public NEMC 2020	For Research Use Only. Not for use in diagnostic procedures.	Agilent

Tetrachlorinated dibenzodioxins (TCDD)

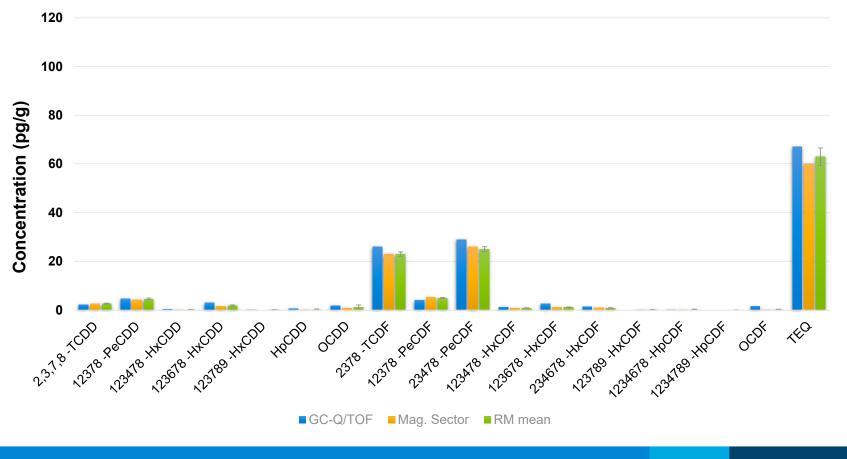
Separation of Isomers

Method Detection Limit (MDL) for 2,3,7,8-TCDD


Samples concentration of 10,000X (500 mL to 50 μ L)

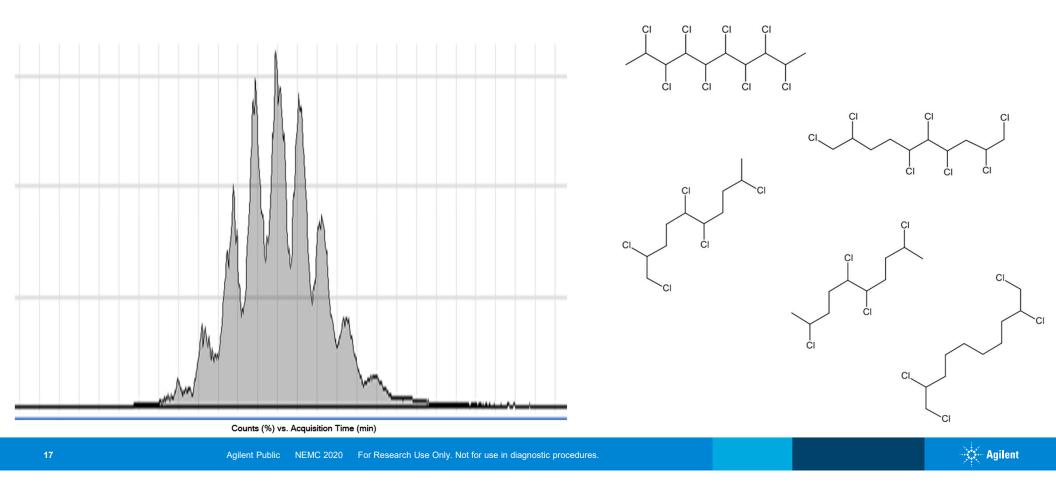
MDL for 2,3,7,8-TCDD is 4.4 pg/L in EPA 1613B

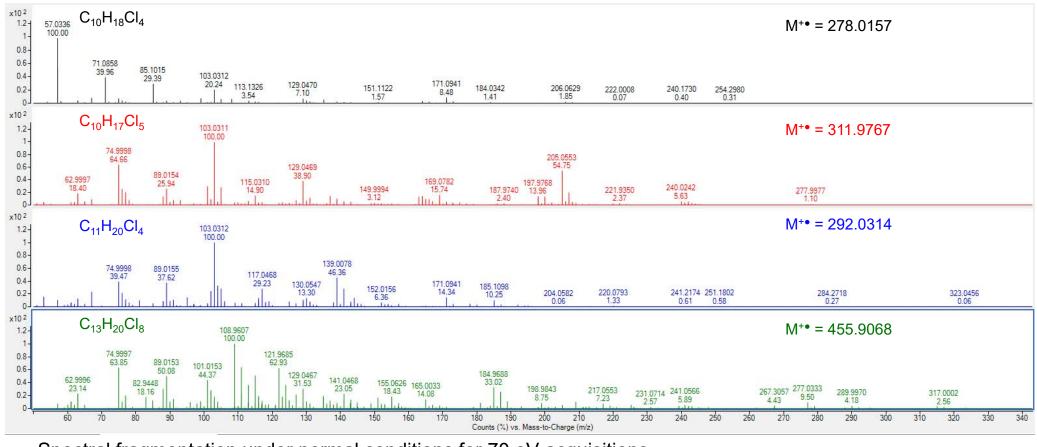
Sample Concentration Spiked equivalent	Injected amount		15 eV, 1 µ	IA	70) eV, 1 μ	A	70 eV, 10 μA			
	amount	RSD %	MDL (pg/L)	IDL (fg)	RSD %	MDL (pg/L)	IDL	RSD %	MDL (pg/L)	IDL	
1 pg/L	10 fg	43%	1.6	16	84%	3.1	31	15%	0.6	6	
2.5 pg/L	25 fg	17%	1.6	16	24%	2.3	23	9%	0.8	8	
10 pg/L	100 fg	7%	63	63				5%	1.8	18	


Dioxins concentration in Herring (6.4% fat)

Comparison between GC/Q-TOF & Magnetic Sector

Dioxins in Sediment reference


Comparison between GC/Q-TOF & Magnetic Sector


Short Chain Chlorinated Paraffins (SCCPs)

- SCCPs are emerging persistent organic pollutants, bioaccumulative, toxic and persistent in the environment
- It is a complex mixture of n-alkanes with different degree of chlorination
- Used as flame retardants in plastics and other materials, as well as in few other applications such as metal processing
- Represent a substantial challenge due to their self-interference as well as interference with other components of complex industrial matrices

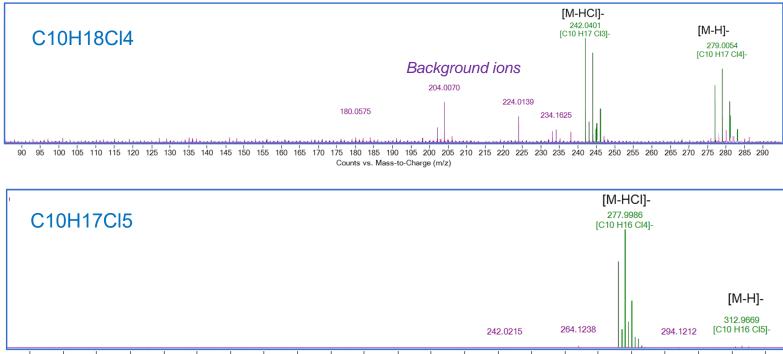
Challenges for the Analysis of the SCCPs: Chromatographic Separation

Challenges for the Analysis of the SCCPs: Excessive Fragmentation

- Spectral fragmentation under normal conditions for 70 eV acquisitions
- The number below the m/z is the relative intensity

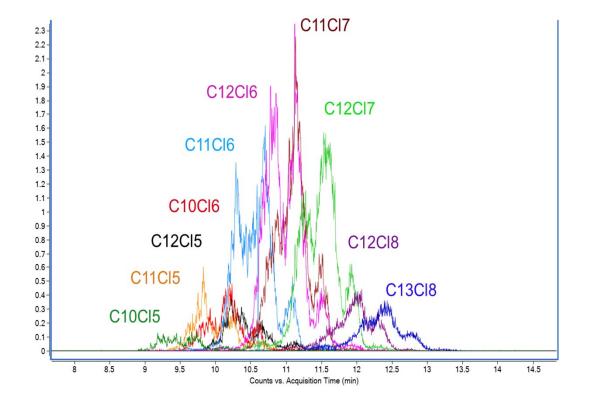
18

Agilent Public NEMC 2020 For Research Use Only. Not for use in diagnostic procedures.

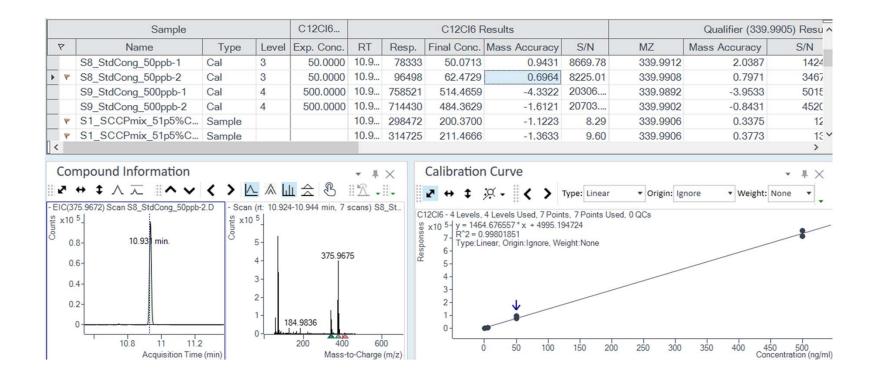

🔆 Agilent

Automatic Molecular Formula Generation

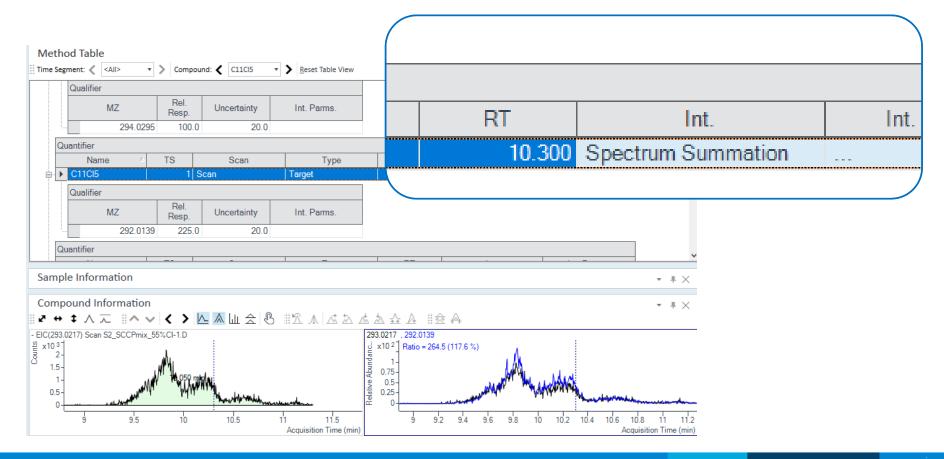
Chromatograms		llowed Species	Limits Charge St	ate Fragment Formula	s Scoring
Spectra			assumed if not know		
Identify Spectra		Positive ions: Negative ions:			
Identification Workflow Database Search Settings Library Search Settings] +H] +Na] +K] +NH4] +C2H5		-H +CI +Br +HCOO +HCOO +CH3COO	
Generate Formulas] +C3H5	*	+CF3COO	
Combine Identification Results			+ ×		×
Reports	MS	ion electron stat	allow both	n even and odd	~
		Group hits with :	same formula (but o	different charge carrier	s)
⊞ Export					
Export General		ments and limits			
± General		ments and limits Element	Minimum	Maximum	A
General		Element C	Minimum 1	60	A
B General	Ee	Element C H	1 0	60 120	A
	Ee	Element C	1	60	A


Molecular Formula Generation uses accurate m/z of the molecular ion, accurate m/z of the isotopes, isotope spacing and isotope intensity for confirmation.

Examples of SCCP Spectra in NCI



Counts vs. Mass-to-Charge (m/z)


EIC Overlay of SCCP mixture

Quantitation Based on Pure Congeners

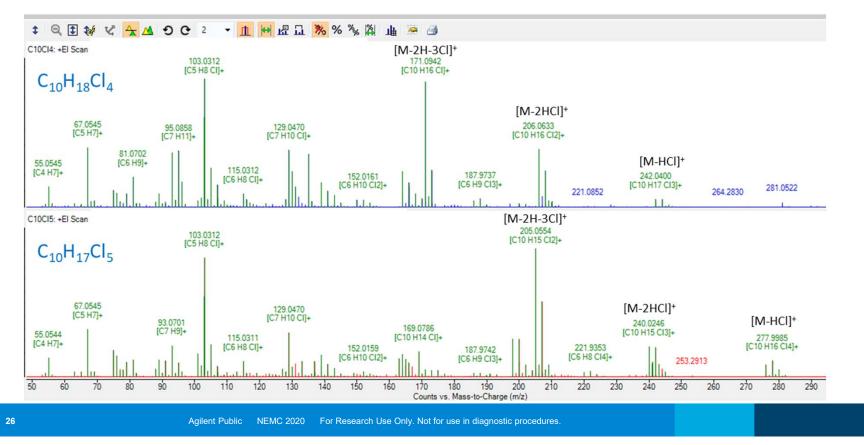
Challenges of SCCP Quantitation

Agilent Public NEMC 2020 For Research Use Only. Not for use in diagnostic procedures.

Agilent

Congonar	RT range,	Со	ncentration, p	pb		%			
Congener	min	51.50%	55.50%	63%	51.50%	55.50%	63%		
C10Cl4	8.8-9.1	115.5	193.7	23	2.3	3.9	0.5		
C10Cl5	9-10.3	106.1	135.3	84.3	2.1	2.7	1.7		
C10Cl6	9.6-10.8	5.9	15.3	41.7	0.1	0.3	0.8		
C10Cl7	10.1-11.2	0.9	6.7	51.6	0.02	0.1	1		
C10Cl8	10-11.3	2.5	4.4	38	0.05	0.1	0.8		
C ₁₁ Cl ₄	9.2-10	189.2	96.2	36.6	3.8	1.9	0.7		
C11Cl5	9.5-10.5	364.6	340.7	89.4	7.3	6.8	1.8		
C11Cl6	10-10.8	342	614.5	330.3	6.8	12.3	6.6		
C11Cl7	10.5-11.7	70.4	353.2	825.9	1.4	7.1	16.5		
C ₁₁ Cl ₈	11-12.5	3.3	25.4	210.6	0.1	0.5	4.2		
C ₁₂ Cl ₄	9.4-10.5	290.7	129.8	11.1	5.8	2.6	0.2		
C12Cl5	10-11.2	351.3	253.7	31.3	7.0	5.1	0.6		
C12Cl6	10.3-11.5	205.9	240.2	46.8	4.1	4.8	0.9		
C ₁₂ Cl ₇	10.9-12.1	331.9	733.3	763.7	6.6	14.7	15.3		
C ₁₂ Cl ₈	11.4-12.6	9.5	49.3	167.3	0.2	1	3.3		
C13Cl5	10.1-11.3	218.8	126.5	12.3	4.4	2.5	0.2		
C13Cl6	10.8-11.8	200.9	161.9	26.1	4	3.2	0.5		
C13Cl7	11.4-12.5	642.3	865.9	497.4	12.8	17.3	9.9		
C13Cl8	11.9-13	84.9	287.8	628.2	1.7	5.8	12.6		
Total 70.7 92.7 78.2									

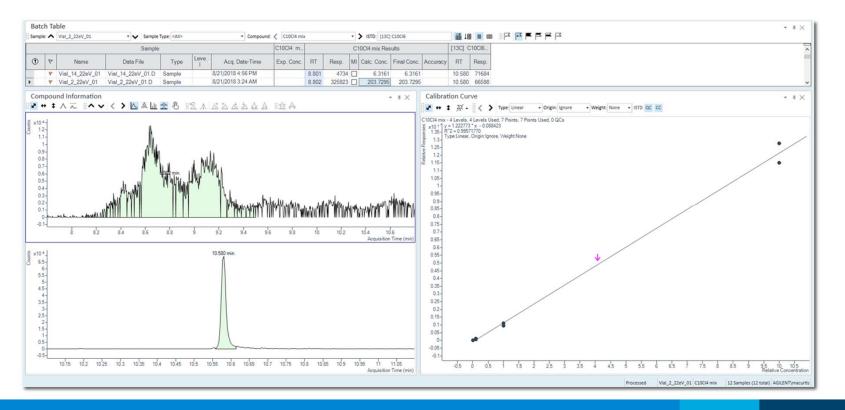
Quant Results: Comparison of 55.5% and 63% SCCP Mixtures


Agilent Public NEMC 2020 For Research Use Only. Not for use in diagnostic procedures.

Low Energy El Analysis of SCCP

- To improve sensitivity of detection and accuracy of quantitation for SCCP congeners with low chlorine content, the low energy EI approach was used.
- Traditional 70 eV EI results in a high degree of fragmentation of SCCP molecules, and does not provide enough unique ion clusters for individual identification.
- Multiple low electron energy settings were evaluated to determine the optimal value.
- The optimum combination of spectral tilt and signal response was achieved with an electron energy set at 22 eV.

Low Energy El Analysis of SCCP


 Low energy EI data indicated a higher degree of fragmentation of the SCCP molecules compared to negative CI

🔆 Agilent

Low Energy El Analysis of SCCP

• However, this technique allowed more sensitive detection of the SCCP species with low chlorine atom number (such as C10Cl4)

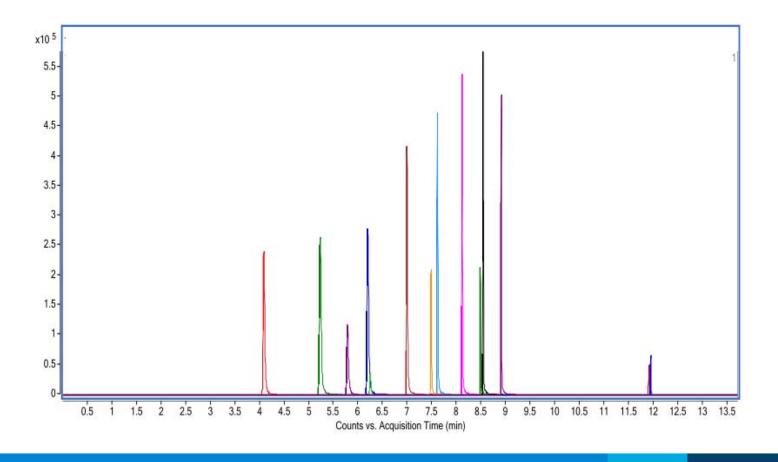
Perfluoroalkyl Substances (PFAS)

Analysis of Fluorinated Alkyl Alcohols in Biosolids

Agilent Public NEMC 2020 For Research Use Only. Not for use in diagnostic procedures.

Standards & Samples

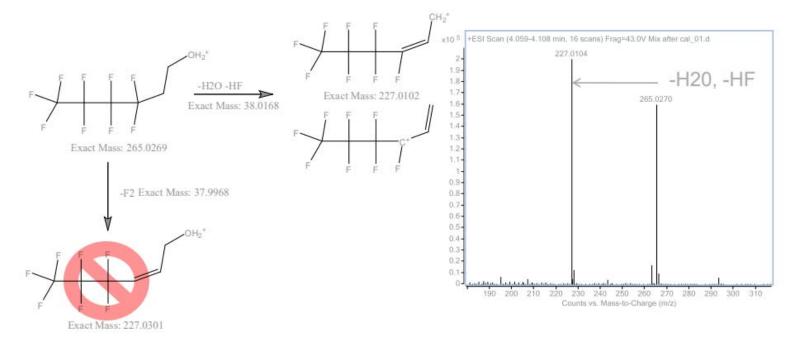
Standards at 100 ng/µL in MTBE Biosolid extracts prepared in EtOAc


Positive CI, 20% Methanol MMI: 2 µL cold, splitless injection 65 °C (0.01 min), 300 °C/min to 250 °C Two min post-column backflush

Oven Ramp:

- 60 °C for 1 min
- 3 °C/min to 75°C for 0 min
- 20 °C/min to 210 °C for 0 min

Acronym	Type 🔽	r.t. 💶	Exact Mass + H 🔽
4:2 FTOH	Target	4.078	265.0269
5:1 FTOH	Target	5.221	301.0081
6:2 FTOH	Target	5.773	365.0206
6:1 FTOH	Target	6.188	351.0049
7:2 sFTOH	Target	6.237	415.0174
7:1 FTOH	Target	6.981	401.0017
8:2 MFTOH	ISTD	7.449	469.0334
8:2 FTOH	Target	7.471	465.0142
8:1 FTOH	Target	7.598	450.9985
9:1 FTOH	Target	8.098	500.9953
10:2 FTOH	Target	8.470	565.0078
10:1 FTOH	Target	8.523	550.9921
11:1 FTOH	Target	8.886	600.9889
d7-MeFOSE	ISTD	11.868	565.0466
MeFOSE	Target	11.889	558.0026
d9-EtFOSE	ISTD	11.897	581.0748
EtFOSE	Target	11.928	572.0183


Chromatogram 17 FTOHs & FOSEs

Structure Elucidation 11:1 FTOH

Structural Elucidation: Why use a HRAM? Nominal loss = 38 m/z; F₂ or something else?

Acronym	Observed Base Peak m/z	Molecular ion -F ₂ m/z	∆ppm	Molecular ion - H_20 , -HF m/z	∆ppm
4:2 FTOH	227.0104	227.0301	86.7726	227.0102	-0.8810

Loss Elucidation Why use a 'Q'-TOF

Mass accuracy facilitated in structural elucidation of fragment ions

- Nominal mass loss of m/z 38 for n:2 FTOHs (n=4,6,8,10...)
 - Loss of F₂ ruled out due to mass accuracy
 - Loss of H₂O and HF confirmed
 - MS/MS confirmed H₂O and HF Losses
- Loss of HF for n:1 FTOH
- Loss of H₂O for perfluorosulfonamidoethanols

Identifying PFAS with loss elucidation Mass Accuracy

Acronym	Formula	Loss 🚬	Exact Mass-Loss	Observed Mass 2 🗾	🛆 ррт 2 🗾
4:2 FTOH	C ₆ H₅F ₉ O	-H2O, -HF	227.0102	227.0105	-1.3215
6:2 FTOH	C ₈ H ₅ F ₁₃ O	-H2O, -HF	327.0038	327.0040	-0.6116
8:2 FTOH	C ₁₀ H ₅ F ₁₇ O	-H2O, -HF	426.9972	426.9975	-0.7026
10:2 FTOH	C ₁₂ H ₅ F ₂₁ O	-H2O, -HF	526.9910	526.9915	-0.9488
7:2 sFTOH	$C_9H_5F_{15}O$	-H2O, -HF	377.0006	377.0011	-1.3263
5:1 FTOH	C ₆ H ₃ F ₁₁ O	-HF	281.0017	281.0019	-0.7117
6:1 FTOH	C7 H3 F13 O	-HF	330.9988	330.9990	-0.6042
7:1 FTOH	C8 H3 F15 O	-HF	380.9954	380.9956	-0.5249
8:1 FTOH	C9 H3 F17 O	-HF	430.9923	430.9927	-0.9281
9:1 FTOH	C10 H3 F19 O	-HF	480.9894	480.9896	-0.4158
10:1 FTOH	C11 H3 F21 O	-HF	530.9860	530.9864	-0.7533
11:1 FTOH	C12 H3 F23 O	-HF	580.9834	580.9835	-0.1721
MeFOSE	C11 H8 F17 N O3 S	-H ₂ O	539.9920	539.9943	-4.2593
EtFOSE	$C_{12}H_{10}F_{17}NO_3S$	-H ₂ O	554.0077	554.0100	-4.1516

Summary

- The GC/Q-TOF is a complementary tool for environmental monitoring that is capable of unique identification of regulated and emerging environmental contaminants.
- The 7250 GC/Q-TOF is a versatile instrument that can analyze various classes of POPs including Dioxins, SCCPs, PCBs and PFAs on the same instrument

Acknowledgements

Dr. Peter Haglund – Umea University

Dr. Anthony Macherone – Agilent Technologies Inc.

Dr. Pierre Dumas - Institut Nacional de Santé Publique du Québec (INSPQ)

Dr. Shoji Nakayama - National Institute for Environmental Studies, Japan